Clustering-based two-dimensional linear discriminant analysis for speech recognition
نویسندگان
چکیده
In this paper, a new, Clustering-based Two-Dimensional Linear Discriminant Analysis (Clustering-based 2DLDA) method is proposed for extracting discriminant features in Automatic Speech Recognition (ASR). Based on Two-Dimensional Linear Discriminant Analysis (2DLDA), which works with data represented in matrix space and is adopted to extract discriminant information in a joint spectral-temporal domain, Clustering-based 2DLDA integrates the cluster information in each class by redefining the between-class scatter matrix to tackle the fact that many clusters exist in each state in Hidden Markov Model (HMM)-based ASR. The method was evaluated in the TiDigits connected-digit string recognition and the TIMIT continuous phoneme recognition. Experimental results show that 2DLDA yields a slight improvement on the recognition performance over classical LDA, and our proposed Clustering-based 2DLDA outperforms 2DLDA.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملبازشناسی جلوههای هیجانی با استفاده از تحلیل تفکیک پذیری مبتنی بر خوشه بندی چهره
Improvement of Facial expression recognition is aim of proposed method. This is a new formulation to the linear discriminant analysis. In the new formulation within-class and between-class covariance matrix are estimated on the each cluster and in the test phase new samples are mapped to the subspace that is related to the cluster of them. At the first we addressed clustering analysis of faces ...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملGender Clustering Improvement for Speaker Adaptation Using LDA
Speaker adaptation is an important issue in current speech recognition researches. Speaker clustering is one of the widely used methods in speaker adaptation. In this paper the effect of Linear Discriminant Analysis (LDA) on increasing the accuracy of some clustering methods such as k-means and Support Vector Machine (SVM) is demonstrated. The performance of this idea was examined on AURORA 2.0...
متن کاملClassifier-based non-linear projection for adaptive endpointing of continuous speech
In this paper we present an algorithm for segmenting or locating the endpoints of speech in a continuous signal stream. The proposed algorithm is based on non-linear likelihood-based projections derived from a Bayesian classifier. It utilizes class distributions in a speech/nonspeech classifier to project the signal into a 2-dimensional space where, in the ideal case, optimal classification can...
متن کامل